Neurotrophin receptor p75(NTR) mediates Huntington's disease-associated synaptic and memory dysfunction.

نویسندگان

  • Verónica Brito
  • Albert Giralt
  • Lilian Enriquez-Barreto
  • Mar Puigdellívol
  • Nuria Suelves
  • Alfonsa Zamora-Moratalla
  • Jesús J Ballesteros
  • Eduardo D Martín
  • Nuria Dominguez-Iturza
  • Miguel Morales
  • Jordi Alberch
  • Sílvia Ginés
چکیده

Learning and memory deficits are early clinical manifestations of Huntington's disease (HD). These cognitive impairments have been mainly associated with frontostriatal HD pathology; however, compelling evidence provided by several HD murine models suggests that the hippocampus may contribute to synaptic deficits and memory dysfunction in HD. The neurotrophin receptor p75(NTR) negatively regulates spine density, which is associated with learning and memory; therefore, we explored whether disturbed p75(NTR) function in the hippocampus could contribute to synaptic dysfunction and memory deficits in HD. Here, we determined that levels of p75(NTR) are markedly increased in the hippocampus of 2 distinct mouse models of HD and in HD patients. Normalization of p75(NTR) levels in HD mutant mice heterozygous for p75(NTR) prevented memory and synaptic plasticity deficits and ameliorated dendritic spine abnormalities, likely through normalization of the activity of the GTPase RhoA. Moreover, viral-mediated overexpression of p75(NTR) in the hippocampus of WT mice reproduced HD learning and memory deficits, while knockdown of p75(NTR) in the hippocampus of HD mice prevented cognitive decline. Together, these findings provide evidence of hippocampus-associated memory deficits in HD and demonstrate that p75(NTR) mediates synaptic, learning, and memory dysfunction in HD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p75NTR in Huntington's disease: beyond the basal ganglia

Huntington's disease (HD) is a fatal neurodegenerative disorder with a characteristic phenotype including chorea and dystonia, uncoordinated fine movements, cognitive decline and psychiatric disturbances. Even though the clinical diagnosis of HD relies on the manifestation of motor abnormalities, the associated memory impairments have been growing in prominence. Indeed, cognitive deficits are e...

متن کامل

TRAF6 and p62 inhibit amyloid β-induced neuronal death through p75 neurotrophin receptor.

Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient's brain. Aβ is known to bind p75 neurotrophin receptor (p75(NTR)) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75(NTR) polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75(NTR) polyubiquitination...

متن کامل

Detection of p75NTR Trimers: Implications for Receptor Stoichiometry and Activation.

UNLABELLED The p75 neurotrophin receptor (p75(NTR)) is a multifunctional receptor that participates in many critical processes in the nervous system, ranging from apoptosis to synaptic plasticity and morphological events. It is a member of the tumor necrosis factor receptor (TNFR) superfamily, whose members undergo trimeric oligomerization. Interestingly, p75(NTR) interacts with dimeric ligands...

متن کامل

Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75 NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction.

Neurotrophins and their receptors, the trk receptor tyrosine kinases (trks) and p75(NTR), are differentially expressed among the cell types that make up synapses. It is important to determine the precise location of these molecules involved in neurotransmission. Here we use immunostaining and Western blotting to study the localization and expression of neurotrophin brain-derived neurotrophic fa...

متن کامل

Deprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy

During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 124 10  شماره 

صفحات  -

تاریخ انتشار 2014